Expressiveness of Definitions and Efficiency of Constructions in Computational Cryptography
نویسنده
چکیده
Title of dissertation: EXPRESSIVENESS OF DEFINITIONS AND EFFICIENCY OF CONSTRUCTIONS IN COMPUTATIONAL CRYPTOGRAPHY David Omer Horvitz Doctor of Philosophy, 2007 Dissertation directed by: Professor Virgil Gligor Department of Electrical and Computer Eng. Professor Jonathan Katz Department of Computer Science The computational treatment of cryptography, and indeed any scientific treatment of a problem, is marked by its definitional side and by it constructive side. Results in this thesis better our understanding of both: on one side, they characterize the extent to which computational definitions capture the security of the basic task of symmetric encryption; on the other, they provide explicit bounds on the efficiency of commitment and secure two-party computation constructions. Specifically: • We relate the formal and computational treatments of symmetric encryption, obtaining a precise characterization of computational schemes whose computational semantics imply their formal semantics. We prove that this characterization is strictly weaker than previously-identified notions, and show how it may be realized in a simpler, more efficient manner. • We provide lower-bounds on the number of times a one-way permutation needs to be invoked (as a “black-box”) in order to construct statistically-binding commitments. Our bounds are tight for the case of perfectly-binding schemes. • We show that the secure computation of any two-party functionality can be performed in an optimal two rounds of communication even in a setting that accounts for concurrent execution with other protocols (i.e., the Universal Composability framework). Here, we rely on the assumption that parties have access to a common reference string; some sort of setup is known to be necessary. EXPRESSIVENESS OF DEFINITIONS AND EFFICIENCY OF CONSTRUCTIONS IN COMPUTATIONAL CRYPTOGRAPHY
منابع مشابه
The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملConstructing cryptographic definitions
This paper mirrors an invited talk to ISCISC 2011. It is not a conventional paper so much as an essay summarizing thoughts on a little-talked-about subject. My goal is to intermix some introspection about definitions with examples of them, these examples drawn mostly from cryptography. Underpinning our discussion are two themes. The first is that definitions are constructed. They are i...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملAn Indistinguishability-Based Characterization of Anonymous Channels
We revisit the problem of anonymous communication, in which users wish to send messages to each other without revealing their identities. We propose a novel framework to organize and compare anonymity definitions. In this framework, we present simple and practical definitions for anonymous channels in the context of computational indistinguishability. The notions seem to capture the intuitive p...
متن کاملA Fast Publicly Verifiable Secret Sharing Scheme using Non-homogeneous Linear Recursions
A non-interactive (t,n)-publicly veriable secret sharing scheme (non-interactive (t,n)-PVSS scheme) is a (t,n)-secret sharing scheme in which anyone, not only the participants of the scheme, can verify the correctness of the produced shares without interacting with the dealer and participants. The (t,n)-PVSS schemes have found a lot of applications in cryptography because they are suitable for<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007